

Laravel Collections Unraveled

Jeff Madsen

This book is for sale at http://leanpub.com/laravelcollectionsunraveled

This version was published on 2016-06-11

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2015 - 2016 Jeff Madsen

http://leanpub.com/laravelcollectionsunraveled
http://leanpub.com
http://leanpub.com/manifesto

Contents

Why this “ePamphlet”? . 1

What are collections? . 2

Array Mimicking . 4

Array Mechanics . 6

Array Wrappers . 8

Ways to sort . 11

Ways to filter . 13

Ways to loop, transform and misc. methods . 16

Support collections vs. Eloquent collections . 18

Appendix - Laravel 5.2 changes . 20

Appendix - Laravel 5.3 changes . 22

To be Continued… . 25

Why this “ePamphlet”?
“Laravel Collections are fantastic!” I constantly read this tweeted - and couldn’t agree more. More
than five dozen useful functions that you might otherwise have to write out yourself - five dozen
tested functions, important to say - all chain-able, documented and ready to make your life easier.

But why write an eBook about it? (I jokingly call it an “ePamphlet” because of its length, but I
suppose eBook is the proper term).

Remember the early days of learning your first programming language? You spent so much time
coming up with an algorithm to solve your problem - and then the instructor would put his
solution up on the overhead (are you old enough to remember “overheads”?) complete with Built-
In-Language-Function-That-Solves-This-Problem()? How you cried, “Unfair! How am I supposed to
know that function even exists?”

Well, you know it exists by studying the source code. That’s what we are going to do. In the
process, we’re going to perhaps improve our basic PHP skills a bit by getting more familiar with
ArrayObjects, CachingIterators, IteratorAggregates and some other handy tools. We’re going to not
just read through the list of available methods, but come up with some practical examples of when
they might be useful to us.

All that seemed too long to write a blog post about, and I find that serial tutorials never really
sink in with me personally. Hopefully this will prove useful enough that you’ll keep it handy as a
reference item while working and internalizing the contents. As an eBook I can continually improve
the examples and let you know when better content is available, or when a new version of Laravel
introduces more functionality.

So…let’s jump in!

1

What are collections?
Just what are Laravel Collections, after all? They’re sort of like Arrays, in that you can add, remove
and iterate over the contents. The documentation calls them “convenient wrappers”. They have all
these extra functions - and you can chain them!

In fact, looking at the Illuminate\\Support\\Collection class itself gives us the answer - “class
Collection implements ArrayAccess”. An ArrayAccess¹ is an interface used primarily to define an
ArrayObject². An ArrayObject is the actual class you build and work with. The best definition and
examples of these two terms I could find comes from the inestimable Lorna Jane Mitchell’s article
ArrayAccess vs ArrayObject³. Please give it a quick read - it is short, does a great job, and I’m
going to reference her second example later in this chapter. So - if you haven’t figured it out yet - a
Collection is a custom ArrayObject, implementing ArrayAccess and some other interfaces in much
the same way.

Let’s look at those and have a quick review of what they do so we can better understand the
functions themselves when we get to them. If you haven’t already, open class Collection Illumi-

nate\\Support\\Collection. You’ll see it implements: ArrayAccess, Countable, IteratorAggregate,
JsonSerializable, Arrayable, and Jsonable.

ArrayAccess - this is what makes a class behave like an array. It forces methods offsetExists(),
offsetGet(), offsetSet(), offsetUnset(). You’ll see those four methods near the bottom of the
class file. As a matter of fact, you’ll see the exact same thing in the PrettyBasket class from Lorna
Jane Mitchell’s article - which is why I recommended you read it.

Countable⁴ - that other well-known function, count(), comes from here. In PHP, arrays don’t actually
implement this interface - that’s why you don’t see $myArray->count(). Our ArrayObject, however,
has included it.

IteratorAggregate⁵ - has the function getIterator() and is what lets us iterate over private
properties of our objects. For example, in the manual’s myData class example, if you removed the
IteratorAggregate implementation you would still be able to foreach over the properties. However,
if you made them private you would not. Implementing this interface gives us that access.

Finally, we have JsonSerializable and Laravel’s own Arrayable and Jsonable. These interface’s allow
us to switch back and forth between json and array style output.

So what do we have at this point? Our own custom ArrayObject class that allows array-like access
to items (corresponding to elements in an actual array), can add and remove items, can count how

¹http://php.net/manual/en/class.arrayaccess.php
²http://php.net/manual/en/class.arrayobject.php
³http://www.lornajane.net/posts/2011/arrayaccess-vs-arrayobject
⁴http://php.net/manual/en/class.countable.php
⁵http://php.net/manual/en/class.iteratoraggregate.php

2

http://php.net/manual/en/class.arrayaccess.php
http://php.net/manual/en/class.arrayobject.php
http://www.lornajane.net/posts/2011/arrayaccess-vs-arrayobject
http://php.net/manual/en/class.countable.php
http://php.net/manual/en/class.iteratoraggregate.php
http://php.net/manual/en/class.arrayaccess.php
http://php.net/manual/en/class.arrayobject.php
http://www.lornajane.net/posts/2011/arrayaccess-vs-arrayobject
http://php.net/manual/en/class.countable.php
http://php.net/manual/en/class.iteratoraggregate.php

What are collections? 3

many items it holds, can traverse those items, and can return those items in array or json format.
Notice, also, that these items are stored and operated on internally as an array.

One thing we do NOT have, however - is a resultset. People often comment on my Collections tips,
asking “why not just use a WHERE clause” or other sql solutions. That might be a better solution
under certain circumstances, but a Collection is not just a fancy wrapper for a database resultset.
You may not even have access to the actual sql, such as when parsing an expensive API response,
or you may wish to use these functions for your own internal data processing. So these methods
should be looked at in a wider context.

Now we are ready to start looking at the class functions.

Array Mimicking
Let’s get into the meat of the subject with the actual functions of the Collection object. I’m going to
break them in several arbitrary groups that I think will help us remember what they do …

These first few you might almost think of as “magic function”. They are part of the actual
construction of the object and not something most people even think about. Do you remember
our ArrayAccess we are implementing as a base for this object? This is what makes it all meet the
requirements of that interface, and allow it to all work like an array.

It is unlikely you’ll ever use these functions directly, unless you wish to inherit from the Collection
class for some reason.

__construct($items = [])

offsetExists($key)

offsetGet($key)

offsetSet($key, $value)

offsetUnset($key)

These functions work just like their native php counterparts, but as class functions. This means

$users->offsetExists(3)

gives the same result as

array_key_exists(3, $users)

Function offsetSet($key, $value) can work two ways:

$collection->offsetSet(3, 200);

will replace the key value at position 3;

$collection->offsetSet(null, 200);

will act just like

$collection[] = 200;

and add a new element on the end.

One last “deep dive” into this area - the __construct. Notice that the __construct likes to start with
an array. If you look in the source code, however, you’ll see that if it doesn’t get an array, it will call
getArrayableItems($items). This will cast Arrayables, Json objects, or even other Collections as
an array. Furthermore, anything that can be cast as an array will be - but not always with the result
you were thinking:

4

Array Mimicking 5

$collection = collect(11,12,13,14,15);

results in:

Collection {#160 #items: array:1 [0 => 11] }

Array Mechanics
Used to format, transform or otherwise manipulate the structure of the $items array. I’m putting
caching in here, as well.

toArray() - will transform from a Collection back to a straight array.

toJson($options = 0) - transforms the Collection to a json encoded string.

jsonSerialize() - a wrapper around toArray(). Making it serializeable. That’s it.

We won’t linger for long over these functions, but I thought it was a good opportunty to point
out something you’ll notice a lot in the source and might wonder about. Have a look at the actual
function toJson($options = 0):

public function toJson($options = 0) { return json_encode($this->toArray(), $options);

}

It’s true that this function actual handles two things, first converting to an array and then applying
the php function json_encode(). A few of the functions don’t even do that much - they are simple
wrappers around php core functions. Why do that?

Chaining! Laravel is not just about RAD, it is about working in a clean, easy to read and work with
manner…“eloquent”, if you will. You’ll notice a very heavy influence from Ruby on Rails when you
work with it for a while. Php loves to wrap functions inside of function inside of functions. Laravel
would prefer this:

$collection= collect([11,12,13,14,15])->shuffle()->toJson();

You can read it, left to right, like a book. Nice, don’t you agree?

Looking at our interator functions, we have

getIterator() - Converts the Collection to an ArrayIterator

getCachingIterator($flags = CachingIterator::CALL_TOSTRING) - Converts the Collection to a
CachingIterator built around an ArrayIterator

Let’s take a look the following little code snippet to understand this better, and see an interesting
use.

$collection= collect([11,12,13,14,15])->getCachingIterator();

This gives as a CachingIterator, which internally holds anArrayIterator with the items 11,12,13,14,15.
Our CachingIterator is empty, but our ArrayIterator is set to the first element. Therefore,

dump($collection->current()); //yields null

dump($collection->getInnerIterator()->current()); //yields 11, our first element

6

Array Mechanics 7

You see that because the outer CachingIterator does not cache anything until it has been “called” by
the internal iterator, it is always one step behind the ArrayIterator. This lets us “look ahead” in our
ArrayIterator to see what is coming next.

Advance one item and see for yourself:

$collection->next();

dump($collection->current()); // yields 11

dump($collection->getInnerIterator()->current()); // yields 12

Neat!

That takes us deep into the internals of the Collection class. Let’s move toward more familiar ground
now with a look at the “Wrapper” Methods.

Array Wrappers
I’ve nicknamed this group the “wrappers” because by and large, they imitate the similarly named
functions that exist in the PHP language itself. All of these work internally with the $items array
that is created when you instantiate the Collection, meaning that they can be strung together in a
more readable fashion as collect([])->someMethod()->someOtherMethod().

Another thing to note with all of the functions that work with finding or extracting certain keys is,
they all tend to funnel through an object called Illuminate\\Support\\Arr, using its get()method.
If you look at this method, you’ll see that this is what lets us use dot notation to access our multi-
dimensional array keys in ways you are already familiar:

$api_key= \Config::get('services.mandrill.secret');

This is one of the reasons I enjoy working with Collections; after digging through it for a while and
following the different Traits and Interfaces it uses, you start to see how so much of the Core ties
together. If you spend enough time you’ll see this thread run through the Request object, Eloquent
and virtually everywhere else. What seems at first to be a giant codebase slowly condenses down to
something much more easy to get your head around.

Let’s jump into the methods. Because these are “wrapper” functions, there is a long list of them
that I really don’t have many Laravel-specific comments to make. The goal here is simply to let you
recognize that the functions exists on this class; later we will show some useful examples with many
of them. However, there are a few that work a little bit differently than their PHP counterparts that
are interesting to take a look at. For example:

implode($value, $glue = null)

This can work in one of two ways. With normal array contents, the first param is the glue and
everything functions as you would expect. But look what happens when you feed it an array of
arrays or objects:

1 $collection = collect([

2

3 ['field1'=> 11],

4 ['field2'=> 12],

5 ['field1'=> 13],

6 ['field2'=> 14],

7 ['field1'=> 15]

8

9])->implode('field1');

10

8

Array Wrappers 9

11 dump($collection);

12

13 // Result: "111315"

The items are first filtered and then glued! You can do the same with your database results:

1 $users = App\User:: all();

2

3 $collection = collect($users)->implode('first_name', '-');

4

5 // Results: "Jeff-Joe-Gerry"

This simple tool means you can make one call to your data, then cleanly and easily rework it into
different presentations. That may not be a big deal if you have full control over your datasource, but
could be a Godsend if you need to make an expensive call to a restrictive api source.

Likewise, these two functions are ones you might prefer to do in the query when you can, but when
you can’t, their callback ability can be wonderful. Look at these three ways to use sum():

1 echo collect([1,3,5])->sum(); // Result: 9

2

3 echo collect([

4

5 ['field1'=> 11],

6 ['field2'=> 12],

7 ['field1'=> 13],

8 ['field2'=> 14],

9 ['field1'=> 15]

10

11])->sum('field1'); // Result: 39

12

13 echo collect([

14

15 ['field1'=> 11],

16 ['field2'=> 12],

17 ['field1'=> 13],

18 ['field2'=> 14],

19 ['field1'=> 15]

20

21])->sum(function($field) {

22

23 if (isset($field['field2'])) return $field['field2'];

24

25 }); // Result: 26

Array Wrappers 10

max(), min() and avg() all work the same way. Let me tell you how much I wish I had these back
when I was creating sales and marketing reports! Try this yourself with the search() function, as
well.

The rest of this list holds no big surprises that I’ve noticed - they are generally just the array_*
version of the native function, written in a clean, chainable fashion to use the internal $items. I’ll
include them for completeness sake; if you notice anything unusual, let me know and I’ll add it in.

flip() - array_flip()

keys() - array_keys()

pop() - array_pop()

pull($key, $default = null) - Arr::pull()

prepend($value) - array_unshift()

reduce(callable $callback, $initial = null) - array_reduce()

reverse() - array_reverse()

shift() - array_shift()

diff($items) - array_diff()

slice($offset, $length = null, $preserveKeys = false) - array_slice()

chunk($size, $preserveKeys = false) - array_chunk()

splice($offset, $length = null, $replacement = []) - array_splice()

map(callable $callback) - array_map()

merge($items) - array_merge()

intersect($items) - array_intersect()

values() - array_values()

count() - count()

push($value) - uses $this->offsetSet(), but key is set to null so always adds to end of

the Collection

put($key, $value) - uses $this->offsetSet() , but key is passed so you can update or add

to a particular place in the collection

Ways to sort
This is a short chapter, but I think it is good to pull these into their own group and investigate them
a little bit. Most of this information is already in the documentation and well-explained, but it’s a
good opportunity to play with a few more examples to see what creative solutions we can come up
with.

shuffle()

Shuffle just randomizes your items. It will NOT maintain your keys, but unlike the PHP function, it
returns a Collection rather than a boolean, which never made any sense anyway.

sort(callable $callback = null)

sortBy($callback, $options = SORT_REGULAR, $descending = false)

sortByDesc($callback, $options = SORT_REGULAR)

To summarize, the differences we have among the three functions is that sort() works with a
simple array object to sort on the first-level values, either in the default alphanumerical manner or
according to the callback you pass in. A very small note about something that is incorrect in the
current documentation - the internal sort uses uasort(), not usort, and so the keys are maintained.
This is why in the example they show the results with $collection->values()->all(), which is
all you need to do if you want a new array of the values only.

If you need to work with a subset of the $items, i.e., a field on the resultset, then you want to go
with sortBy() and tell it which field to pluck and sort on. Optionally, instead of the field if you pass
it a callable (that’s to say, the name of a function to use as a callback, or an anonymous function
itself) it will work with your own sorting algorithm.

sortByDesc() is merely sortBy() with the third param set to “true”, for convenience when you
don’t wish to use the second $options argument.

There’s only so much you can demonstrate with sorting all by itself, so let me leave you with one
interesting sort and the promise that we’ll visit these again combined with other functions.

Marketing is infamous for wanting custom sorts and displays. Imagine this array was full of item
data and they wanted it to show up in a particular order on the page, say Bookcase, Desk, Chair…

11

Ways to sort 12

1 $collection = collect([

2

3 ['name' => 'Desk'],

4 ['name' => 'Chair'],

5 ['name' => 'Bookcase'],

6

7]);

We could use the callback to sort it exactly as they wanted:

1 $sorted = $collection->sortBy(function ($product, $key)

2 {

3

4 return array_search($product['name'], [1=>'Bookcase', 2=>'Desk', 3=>'Chair']\

5);

6

7 });

8

9 dump($sorted->values()->all());

Hopefully that tip was worth the price of admission. On to filters…

Ways to filter
We saw last chapter how we could sort our data, which is handy, but where the real fun begins
is when we start filtering the collection items. Most of these methods have certain similarities, the
most outstanding being the ability to use a callback function to further modify its behavior. Let’s
group and compare them as we’ve been doing.

The first group we’ll look at is what I call the “validation” filters. Not really filters in the traditional
sense, but rather confirm the existence of certain data.

isEmpty()

isEmpty() is a little bit interesting not so much for the function, which is just a wrapper around
empty($items), but for how it is and can be used. First, compare the following (using a User id that
doesn’t exist):

$user1 = App\User:: find(100);

dump($user1->isEmpty());

with

$user2 = App\User:: find([100]);

dump($user2->isEmpty());

The first one should error out on you - the result of $user1 is not a collection. In the second one I
used a little trick to force the result to be a collection so we could see it work properly. This is one of
the small “gotcha’s” developers often come across when they first decide to start using the isEmpty()
function. Eloquent will, by default, not return a single row result type as a collection (as of v5.1 -
this is being discussed and always returning a collection is being considered, so watch this space).

Why not just always use empty() and be safe? No reason, really. It’s not “better” and doesn’t have any
obscure, under the hood differences. As a function of an object, you can occasionally do interesting
things like a hand-rolled contains() function:

$users = App\User::all();

dump($users->where('first_name', 'Jeff')->isEmpty());

But this is really just flexibility; there’s no particular advantage I can think of for doing so in ordinary
work.

has($key)

has() uses the internal offsetExists to determine if the key is there; it does not check it for
emptiness. In other words, if the key type is set to null, or 0, it will still pass this method as true.

13

Ways to filter 14

Be careful! This is actually very different from the Request::has() function, which does check for
emptiness and can even check for multiple keys’ existence at once.

contains($key, $value = null)

contains looks for values, or key-value pairs. Again, though, it is only returning a boolean about
whether or not the value is found, not how many or the records themselves. “Is there a user with
first name of Fred?” This will tell us. You may also get more precise in your searches by creating a
callback for it to use.

That group is useful for checking for the existence of keys or values, but what about actually pulling
them out and using them? Have no fear - this is one of the areas that Laravel Collections really
shine!

get($key, $default = null)

get() is the matching pair to has(), and also allows for a default value if not found (like you’ve
seen on the Request object).

If you need a full set of data, try:

pluck($value, $key = null)

This is the equivalent method for contains(), in that you tell it the field of the multi-array you
want and it will return all of those items. This works for a collection of models, of course, so:

$users = App\User::all();

dump($users->pluck('last_name'));

Will give you a directory of last names. Signify the key you’d like with the second parameter:

$users = App\User::all();

dump($users->pluck('last_name', 'id'));

Because one of the most common tasks we have for working with result sets is to create dropdowns,
we also have a specialized form of pluck() called lists($value, $key = null). There is absolutely
no difference - lists()merely calls pluck() internally. If anything, the reason this second function
was created is just to spotlight it for you so you make a habit of using this syntax rather than using
a foreach loop to specially build your dropdown data.

While pluck() is nice for grabbing all the last names, sometimes you want the complete records but
filtered on a certain name. In this case, try where() or filter.

‘ $users = AppUser::all();

dump($users->where(‘first_name’, ‘Jeff’)); ‘

is the same as:

dump($users->filter(function($item){ return ($item['first_name'] == 'Jeff'); }));

As you can see, filter offers us much more flexibility, whereas where gives us simplicity to
remember and use. Because these are Collections, we can chain them together, such as:

Ways to filter 15

$users = App\User::all(); dump($users->where('first_name', 'Jeff')->where('active',1));

Be careful! This looks very much like the Eloquent where() function - until you start trying
things like where('last_name', '!=', 'Madsen') or whereActive(1). You quickly realize this is
an array_filter() function and you’ll need to write filter callbacks for that.

Speaking of filter callbacks - youmay already know that array_filter($array);with no callback
will simply filter out empty elements, but the Collection class’ filter will do the same:

dump(collect([null, 2, 0, 6])->filter()); // Results: array(2, 6)

Be careful, though - notice that both the null and the possibly valid 0 elements are removed.

Let’s end with a few lesser known functions that might be “just the thing” some day.

reject($callback) is simply a filter() that returns a set of excluded values. Handy tool for finding
outliers for marketing reports, or suspicious user agents.

unique($key = null) does what it says for simple arrays, but careful with more complex objects.
On a multi-dimensional array, for example, it will essentially “group by” each unique value, taking
the first value of the other rows.

keyBy($keyBy) - allows you to pull out one set of data from your items and make that the key.

random($amount = 1) - grab a random element or collection of elements (if more than one is asked
for)

first(callable $callback = null, $default = null) - grab the head() of a simple array, or the
of the filtered result if you use a callback.

last(callable $callback = null, $default = null) - grab the tail() of a simple array, or the of
the filtered result if you use a callback.

Ways to loop, transform and misc.
methods
Let’s close things out with a few odds and ends that might be useful to know about.

Grouping:

This is one of my favorites. Remember how you would query all the user types, then loop over them
and gather each set of users so you could make nice reports with the proper heading? Forget all that:

1 dump(collect([

2 ['name' => 'Jeff', 'type' => 'programmer'],

3 ['name' => 'Gerry', 'type' => 'designer'],

4 ['name' => 'Joe', 'type' => 'programmer'],

5])->groupBy('type'));

Looping:

each(callable $callback) - this works very much like the javascript version of its name. Instead
of creating a loop with

1 foreach ($collection as $item){

2 // do something

3 }

we can call it in a more mapping fashion, including chaining:

1 collect([1, 12, 32, 14, 5])->sort()->each(function($item, $key){

2 echo $item . '-';

3 });

Another interesting option is every(), which allows you to make a subset of the collection:

1 dump(collect([1,2,3,4,5])->every(2,1));

2 // yields an array(2,4)

16

Ways to loop, transform and misc. methods 17

Pagination:

Laravel has a wonderful set of pagination functions that work with the QueryBuilder and Eloquent.
That said, there are times when you may wish to use Illuminate\Pagination\Paginator to create
your own paginator. Most likely you will still want to add limits and offsets to your query, but
occasionally you may prefer to cache a complex resultset and slice it. forPage($page, $perPage)

uses array_slice() but helps you by automatically calculating the lenths and offsets so you can just
work with clean code.

take($limit) also uses array_slice(), but in a simpler form to bring back the requested number of
items. Use a negative $limit to grab from the end.

forget($keys) will simply unset() the keys from the original collection. If you need to preserve
the original, be sure to call this on a copy.

Transformation:

These functions are for “brute force” collection of all the values present, whether a single level deep or
multi-dimensional. I imagine their greatest use would be in searching or tracing through a complex
multi-level hierarchy.

collapse() - turns a collection of arrays into a single collection of all values.

flatten() - like collapse(), but works on multi-dimensional collections.

zip($items) - will array merge on keys; i.e.,

collect([1,2,3])->zip([4,5,6]);

Results: array(array(1,4), array(2,5), array(3,6))

transform(callable $callback) - this is just like map(), with the difference being that map()
returns a new collection with the callback results, but transform() actually applies them to the
original collection.

Support collections vs. Eloquent
collections
Working through these examples you’re sure to have noticed a lot of familiar method names from
other objects. The Request and Config (actually the Illuminate\Config\Repository) are two that
should come to mind, but the framework is full of them. However, if you look more closely you’ll
see that these are nothing more than “cousins” of the Collection - they all implement ArrayAccess
and use Illuminate\Support\Arr class, but have no tighter relationship than that.

The Eloquent Collection, on the other hand, is a directly inherited class. All of the methods reviewed
in this book are available, although a few have been overridden to function slightly differently, as
well as some others added that are only available in the child class. To be honest, this can make
things rather confusing at times.

We will limit how deeply we get into the Eloquent Collection class (perhaps a second edition of this
book will spend more time here), but there are some areas we definitely want to visit if we are going
to fully master Collections.

Our first indication that something is different can be seen with the following experiment:

1 $users = App\User::all();

2 dump($users->find(2));

3

4 $users = collect(App\User::all());

5 dump($users->find(2));

The first dump() finds the model we are searching for; the second throws an error since Illumi-
nate\Support\Collection::find() doesn’t exist. There is no great mystery behind this - Eloquent has
its own set of functions and classes, and while we say that App\User::all() returns a collection,
we really mean the Eloquent Collection subclass is being called. Confusing, though, if you are used
to referring to everything as a “collection” without qualification.

While most of the differences are minor and pertain more toward making the collection object work
with a group of Eloquent models, there are a few functions that you might want to know about and
that are not (currently) documented:

add() - this works just as push() does, and adds a model onto the end of the collection

modelKeys() - this will grab the full set of returned primary keys, either id by default or whatever
you may have designated in your model.

18

Support collections vs. Eloquent collections 19

only() and except() sound just like the Request object methods of those names, but actually work
on the primary keys to filter the models

withHidden() - will include hidden fields in the results

Appendix - Laravel 5.2 changes
Laravel 5.2 is coming out in December (2015) and there are a lot of nice new features to be
excited about. Collections are no exception - there are several new functions I think you will really
appreciate.

The first two are “borrowed” from the Request and Eloquent Collection objects. I say “borrowed”
in quotes because really these two are based on the Arr class and have just been given wrapper
functions on the SupportCollection. They are mirror images of each other:

except()

1 Ex. - $arr = Collection(['name' => 'Jeff', 'twitter' => 'codebyjeff']);

2

3 dump($arr->except('name'));

4

5 // result: array{ 'twitter' => 'codebyjeff' }

only()

1 dump($arr->only('twitter'));

2

3 // result: array{ 'twitter' => 'codebyjeff' }

A small change has been made to prepend() so that you can give it a key as well as a value, such as
(taken from the test⁶, which is an excellent way to study these!):

1 $c = new Collection(['one' => 1, 'two' => 2]);

2

3 $this->assertEquals(['zero' => 0, 'one' => 1, 'two' => 2], $c->prepend(0, 'zero'\

4)->all());

Just remember it is $value, $key and not the other way around like you’d think with an array.

Function flatMap() combines mapping with the flatten() function, allowing you to write essentially
a custom callback to retrieve nested arrays, then collapse them into a single dimensional array. This
might be used, for example, to look through all of the users’ choices and return a list of them.

⁶https://github.com/laravel/framework/blob/5.2/tests/Support/SupportCollectionTest.php

20

https://github.com/laravel/framework/blob/5.2/tests/Support/SupportCollectionTest.php
https://github.com/laravel/framework/blob/5.2/tests/Support/SupportCollectionTest.php

Appendix - Laravel 5.2 changes 21

1 $data = new Collection([

2 ['name' => 'taylor', 'hobbies' => ['programming', 'basketball']],

3 ['name' => 'adam', 'hobbies' => ['music', 'powerlifting']],

4]);

5

6 // this callback simply returns the 'hobbies', but could do anything

7 // you might do in an array_map

8

9 $data = $data->flatMap(function ($person) {

10 return $person['hobbies']; }

11);

12

13 $this->assertEquals(['programming', 'basketball', 'music', 'powerlifting'], $dat\

14 a->all());

Finally, one of the simplest yet potentially most interesting is macroable(). Simple, because it only
requires the addition of the Trait Macroable; potentially most useful because it allows you to create
your own Collection-level scopes, putting together any chained collection functions along with any
other business logic you may wish to add.

1 // Foo() macro : unique values starting with A

2

3 Collection::macro('foo', function () {

4

5 return $this->filter(function ($item) {

6 return strpos($item, 'a') === 0;

7 })

8 ->unique()

9 ->values();

10 });

11

12 $c = new Collection(['a', 'a', 'aa', 'aaa', 'bar']);

13

14 $this->assertSame(['a', 'aa', 'aaa'], $c->foo()->all());

When I read this, the first thing that came to mind was stored procedures or business intelligence
objects to encapsulate business logic for the other developers to make use of. I’m interested in seeing
examples of how people are using it - go ahead and grab a copy of 5.2 dev and let me know your
ideas!

Appendix - Laravel 5.3 changes
Laravel 5.3 should be out in a few weeks (June 2016) and there are a couple of new functions and
several changes you should know about.

First, three new functions:

diffKeys(): A wrapper around array_diff_key. Get the items in the main collection whose keys
are not present in the second one. Notice we are talking about keys, not values (which can be found
with the already existing diff()). For example:

1 $collection1 = collect([1 => 'red', 2 => 'green', 3 => 'blue', 4 => 'orange']);

2 $collection2 = collect([2 => 'red', 3 => 'pink']);

3

4 dump($collection1->diffKeys($collection2));

5

6 // result: array:2 [�

7 1 => "red"

8 4 => "orange"

9]

How might this be used? If you recall the getDictionary() function on the Eloquent/Collection,
this will set up an array of models where the keys are the models’ primary keys. diffKeys() would
then let you quickly and easily compare two result sets from your data source.

union(): Union simply concatenates the two collections, giving preference to the parent when there
is a conflict.

1 $collection1 = collect([1 => 'red', 2 => 'green', 3 => 'blue', 4 => 'orange']);

2 $collection2 = collect([2 => 'red', 3 => 'pink']);

3

4 dump($collection1->diffKeys($collection2));

5

6 // result: array:4 [�

7 1 => "red"

8 2 => "green"

9 3 => "blue"

10 4 => "orange"

11]

22

Appendix - Laravel 5.3 changes 23

You can see that since both collections have the keys 2 and 3, the values of $collection1 are
maintained. Essentially all this is doing under the hood is to use the array forms of the two collections
so they can be concatenated normally. Identical to:

dump($collection1->toArray() + $collection2->toArray());

combine(): A wrapper for the array_combine combine function that uses the values of the parent
collection as keys and the second collection as values. As expected, thee are a few things to watch
for:

1) If both collections do not have the same number of elements, an exception is thrown.

2) If the parent collection is a set of Models, each will be json encoded to create a string for the key,
with the matching model from the second collection as the value:

1 $user1 = \App\User::find([1]);

2 $user2 = \App\User::find([2]);

3

4 dump($user1->combine($user2));

5

6 //result:

7 array:1 [�

8 "{"id":1,"name":"Jeff","email":"jrmadsen67@gmail.com", ...}" => User {#157 �}

9]

The next set of changes all center around where and its variations - whereLoose, whereIn, and
whereInLoose.

The biggest of these is where; instead of the fixed where($key, $value)where only “=” can be used,
it has been changed to:

where($key, $operator, $value = null)

Fear not! All of your old code has not been broken. The function has been “monkey-patched” so that
if only two arguments are given, it will continue to work as is, but if three are used it will assume
the new, more flexible format. There is a function called operatorForWhere() that shows you all of
the accepted $operator values.

In addition:

1) whereIn now uses loose comparisons by default; there is a new whereInStrict

2) whereIn will accept any arrayable objects, not just arrays, as the second argument

Finally, there is a small change to the keyBy() function when passing closures, which now works
with both the key and value, such as in this test:

Appendix - Laravel 5.3 changes 24

1 public function testKeyByClosure()

2 {

3 $data = new Collection([

4 ['firstname' => 'Taylor', 'lastname' => 'Otwell', 'locale' => 'US'],

5 ['firstname' => 'Lucas', 'lastname' => 'Michot', 'locale' => 'FR'],

6]);

7 $result = $data->keyBy(function ($item, $key) {

8 return strtolower($key.'-'.$item['firstname'].$item['lastname']);

9 });

10 $this->assertEquals([

11 '0-taylorotwell' => ['firstname' => 'Taylor', 'lastname' => 'Otwell', 'l\

12 ocale' => 'US'],

13 '1-lucasmichot' => ['firstname' => 'Lucas', 'lastname' => 'Michot', 'lo\

14 cale' => 'FR'],

15], $result->all());

16 }

As always, interested in hearing how you put these changes to use!

To be Continued…
Yes, to be continued. New versions of Laravel will come out; new uses will be found for this material.
I hope this was worth the read, and that it has piqued your interest to explore!

Thank you very much for reading.

Jeff Madsen

Codebyjeff⁷

@codebyjeff⁸

⁷http://codebyjeff.com
⁸https://twitter.com/codebyjeff

25

http://codebyjeff.com
https://twitter.com/codebyjeff
http://codebyjeff.com
https://twitter.com/codebyjeff

	Table of Contents
	Why this ``ePamphlet''?
	What are collections?
	Array Mimicking
	Array Mechanics
	Array Wrappers
	Ways to sort
	Ways to filter
	Ways to loop, transform and misc. methods
	Support collections vs. Eloquent collections
	Appendix - Laravel 5.2 changes
	Appendix - Laravel 5.3 changes
	To be Continued…

